Тип колонны тарелка ситчатая

Ситчатые и решетчатые тарелки

Ситчатые тарелки со сливным устройством применяют в колонных аппаратах диаметром 400—4000 мм при расстоянии между тарелками от 200 мм и более. Основной элемент таких тарелок — металлический диск с отверстиями диаметром 2—6 мм, расположенными по вершинам равносторонних треугольников (рис. 2.13).

Рис. 2.13. Элемент сетчатой тарелки

В колоннах диаметром более 800 мм тарелки состоят из отдельных секций. По креплению секций тарелки к корпусу и устройству переливов такие колонны аналогичны аппаратам с колпачковыми и клапанными тарелками. Преимущество ситчатой тарелки — большое свободное (т. е. занятое отверстиями) сечение тарелки, а следовательно, и высокая производительность по пару, простота изготовления, малая металлоемкость. По производительности по пару (газу) эти тарелки на 30—40 % превосходят колпачковые. Недостаток — высокая чувствительность к точности установки. Аппараты с ситчатыми тарелками не рекомендуется использовать для работы на загрязненных средах; это может вызвать забивание отверстий.

Для уменьшения гидравлического сопротивления и расширения диапазона устойчивой работы ситчатых тарелок их комбинируют с клапанными устройствами (рис. 2.14); в результате повышается эффективность работы тарелки при малой и большой производительности по пару. При малых нагрузках тарелка работает как обычная ситчатая, с увеличением нагрузки открывается клапан 2 и между клапаном и тарелкой 1 образуется щель, откуда под некоторым углом к горизонтали выходит пар, обеспечивая перемещение жидкости по тарелке в направлении слива и уменьшая разность уровней жидкости на тарелке. Ситчато-клапанная тарелка обеспечивает большой диапазон устойчивой работы при небольшом гидравлическом сопротивлении, что делает ее пригодной для процессов, протекающих под вакуумом.

Рис. 2.14. Элемент ситчато-клапанной тарелки

Ситчатые тарелки с просечно-вытяжными отверстиями (рис. 2.15) используют в колонных аппаратах диаметром 1200— 4000 мм. Такие тарелки состоят из отдельных секций 1, изготовляемых из листа толщиной 2—3 мм с просечно-вытяжными отверстиями. Тарелка работает как -струйная прямоточная. Для уменьшения брызгоуноса под углом 60° над тарелкой устанавливают отбойные элементы 2.

Рис. 2.15. Тарелка с просечно-вытяжиымн отверстиями

Свободное сечение тарелки, выбираемое из условия отсутствия «провала» жидкости, должно быть достаточно большим (не менее 30 % сечения колонны), чтобы тарелка обладала невысоким гидравлическим сопротивлением. Благодаря этому такие тарелки используют в вакуумных колоннах. Минимальное расстояние между тарелками в колонне 450 мм.

Ситчатые тарелки наиболее распространены в качестве контактных устройств ректификационных колонн воздухоразделительных установок, работающих при низкой температуре. В аппаратах небольшого диаметра применяют S-образные ситчатые тарелки (рис. 2.16). Такая тарелка представляет собой перфорированный лист /, к которому припаяна S-образная перегородка 3, делящая тарелку на две части. Стекающая с верхней тарелки жидкость через прорези в сливном стакане 2 и далее через переливную перегородку 5 поступает на тарелку и движется в направлении, указанном стрелками, контактируя с паром, поднимающимся через отверстия в листе 1. Подойдя к перегородке 3 с другой стороны, жидкость стекает на следующую тарелку через сливную перегородку 4 и сливной стакан.

Рис. 2.16. Ситчатая тарелка с S-образной перегородкой

Решетчатые провальные-тарелки (рис. 2.17) используют в установках, рабочая производительность которых отклоняется от расчетной не более чем на 25 %.

Рис. 2.17. Решетчатая провальная тарелка

К преимуществам этих тарелок следует, прежде всего, отнести простоту конструкции и малую металлоемкость. Кроме того, тарелки имеют большую пропускную способность по жидкости и, при достаточной ширине щели, могут быть использованы для обработки загрязненных жидкостей, оставляющих осадок на тарелке. По эффективности решетчатые провальные тарелки обычно не уступают тарелкам с переливом. К недостаткам относятся узкий диапазон устойчивой работы и сложность обеспечения равномерного распределения орошения по поверхности тарелок в начале процесса.

Читайте также:  Фоллаут 4 тарелка пришельцев

Конструктивно тарелка представляет собой плоский, перекрывающий все сечение колонны диск 1 с выштампованными в нем прямоугольными щелями, уложенный на опорную конструкцию 2. Обычно площадь прорезей составляет 10—30 % всей площади тарелки. Прорези (как правило, размерами 4×60 мм) располагаются на поверхности тарелки с шагом t = 10 . 36 мм.

При работе колонны под давлением поступающих паров на полотне тарелки создается слой жидкости, через которую барботирует пар. При этом часть жидкости протекает через прорези на расположенную ниже тарелку. Прорези работают периодически: места стока жидкости и прохода пара произвольно перемещаются по полотну тарелки.

Источник

Типы ректификационных тарелок

Виды тарелок

В колонных аппаратах НПЗ в настоящее время используются десятки конструкций контактных устройств, отличающихся по своим характеристикам и технико-экономическим показателям. Наряду с тарелками первого поколения (колпачковые, желобчатые), которые до сих пор эксплуатируются на старых производствах, широкое распространение на установках АВТ получили S-образные, клапанные (пластинчатые, дисковые) и другие типы КУ.

Тарелки клапанные, колпачковые, ситчатые

Колпачковые

Ситчатые

Решетчатые

С S-образными элементами

Клапанные (дисковые)

Область применения различных типов тарелок

Основные характеристики сравнения

Нередки случаи, когда в одной ректификационной колонне в разных секциях используются тарелки разных типов. Это объясняется тем, что паровые и жидкостные нагрузки по высоте нефтяных колонн, особенно работающих с боковыми отборами, существенно различаются (иногда на порядок). При сравнении контактных устройств различного типа в качестве основных обычно выступают следующие показатели:

  • Производительность.
  • Гидравлическое сопротивление.
  • Эффективность (коэффициент полезного действия) – характеризует степень приближения реального процесса разделения на тарелке к теоретически достижимому (теоретическая тарелка).
  • Допустимый диапазон варьирования рабочих нагрузок (и по пару, и по жидкости), который определяется отношением максимально допустимой нагрузки к минимально допустимой.
  • Градиент уровня жидкости по ширине полотна тарелки, который определяется тем обстоятельством, что жидкость на тарелку вводится с одного края тарелки (секции), а отводится с другого. При течении жидкости по полотну тарелки она преодолевает определенное гидравлическое сопротивление, поэтому высота слоя жидкости у приемного кармана превышает соответствующий уровень у сливного кармана. Наличие градиента приводит к нарушению равномерности распределения пара по ширине барботажного слоя и в итоге – к снижению эффективности КУ.
  • Высота межтарельчатого расстояния, которая должна обеспечивать нормальную работу гидравлического затвора для обеспечения гарантированного перетока жидкости с верхней тарелки на нижнюю.
  • Обеспечение длительной работоспособности при работе на загрязненных средах и средах, склонных к образованию смолистых или других отложений.
  • Металлоемкость.
  • Стоимость.
  • Удобство монтажа и ремонта, простота конструкции.

Расчет отводимого тепла выносным орошением

Для сложных колонн, работающих с выносными холодными циркуляционными орошениями, к которым относятся и колонны АВТ, весьма важной становится ещё одна специфическая характеристика: величина реализуемого теплосъема от внутреннего парового потока холодным орошением – Q, (кВт/м 3 ). В этой характеристике величина достигаемого теплосъема отнесена к 1 м 3 барботажного слоя или к 1 м 3 насадки. В отечественной литературе данная характеристика учитывается достаточно редко, хотя она в значительной мере определяет эффективность работы циркуляционных орошений.

Количество тепла, отводимого от циркуляционного орошения во внешнем теплообменнике, определяется:
Q=L(Hн-Hк)

Все это количество тепла затрачивается внутри колонны на конденсацию части парового орошения, а энтальпия жидкого потока достигает при этом значения Hн. В процедуре технологического расчета, который, как правило, проводится по «теоретическим тарелкам» процесс теплообмена будет завершен на первом же КУ. Фактически же именно реальная эффективность процесса теплосъема на КУ будет определять, на скольких реальных тарелках будет завершен этот процесс.

Читайте также:  Подогреватель для тарелок v32

Выбор оптимальной конструкции контактных устройств

Конструкции КУ, выигрывающей у всех остальных конструкций по всем показателям, не существует. Каждая из конструкций обладает своими преимуществами и недостатками и своей областью рационального использования. В зависимости от особенностей конкретного процесса наибольшее значение могут приобретать те или иные характеристики из вышеперечисленных. Так, на выбор КУ для колонн атмосферного блока наибольшее влияние оказывают показатели производительности, эффективности и допустимого значения диапазона рабочих нагрузок, в котором обеспечивается высокая эффективность работы тарелок. Для колонн вакуумного блока на первое место выдвигается гидравлическое сопротивление КУ, поскольку оно будет определять интенсивность процесса разложения тяжелых углеводородов в зоне нагрева, а значит, в значительной мере и качество товарных фракций, хотя и в этом случае должны, конечно, учитываться и остальные характеристики. Наиболее распространенные типы КУ приведены на рисунке.

В атмосферных колоннах хорошо зарекомендовали себя различные модификации клапанных КУ с дисковыми, прямоугольными и трапециевидными клапанами, а также комбинированные S-образные тарелки с клапанами. В вакуумных колоннах представляет интерес использование дисковых клапанов эжекционного типа, которые характеризуются наименьшим гидравлическим сопротивлением среди всех типов КУ.

Рис. 3.1. Распространенные типы колпачков и клапанов:

Колпачки: а – круглый; б – шестигранный; в – прямоугольный; г – желобчатый; д – S-образный; клапаны: е – прямоугольный; ж – круглый с нижним ограничителем; з – круглый с верхним ограничителем; и – балластный; к – дисковый эжекционный перекрестноточный; л – пластинчатый перекрестно-прямоточный; м – S-образный колпачок с клапаном.
Обозначения: 1 – диск тарелки; 2 – клапан; 3 – ограничитель; 4 – балласт.

Переливные устройства тарелок

Для организации перелива рабочей жидкости с вышележащей тарелки на нижележащую в КУ используются специальные переливные устройства, включающие в себя сливную перегородку и карман (рис. 3.2). При больших значениях удельных нагрузок по жидкости (измеряется через расход фазы – м 3 /час отнесенный к 1 м 2 сечения колонны или к 1 м длины сливной перегородки), что характерно для многотоннажных колонн установок АТ-АВТ, для снижения градиента уровня жидкости применяются многопоточные конструкции КУ (от 2-х до 4-х потоков). Сливные карманы могут быть использованы также для подвода на КУ промежуточных потоков (холодные орошения) и/или для отвода боковых отборов (рис. 3.3). В последнем случае объемная емкость кармана наращивается за счет увеличения межтарельчатого расстояния, что повышает надежность работы откачивающего насоса.

Рис. 3.2. Устройство узлов перетока жидкости с тарелки на тарелку и ввода орошений для однопоточных (а) и двухпоточных (б) тарелок: 1 – корпус колонны; 2 – секции тарелок; 3, 4 – коллекторы ввода жидкости на верхнюю и промежуточную тарелки; 5, 6 – сливные карманы

Массо – теплообмен между взаимодействующими фазами (пар – жидкость) протекает на КУ в барботажном слое: структуре, которая образуется при истечении парового потока из небольших отверстий или щелей, выполненных в полотне тарелки или в специальных устройствах (колпачках), в слой жидкости под небольшим избыточным давлением. Эта структура представляет собой ансамбль пузырьков, размер которых измеряется миллиметрами. Паровые пузырьки зарождаются при истечении газа, всплывают в слое жидкости за счет разности плотностей жидкой и паровой фаз и разрушаются на верхней границе барботажного слоя. Размер пузырьков определяется свойствами паровой и жидкой фаз (плотность, вязкость, поверхностное натяжение, …), конструкцией КУ и гидродинамическими условиями взаимодействия фаз. Суммарная поверхность массообмена в барботажном слое измеряется десятками и даже сотнями м 2 поверхности, приходящихся на 1 м 3 объема барботажного слоя.

Рис. 3.3. Узлы вывода боковых погонов (жидкость) из колонны: 1 – корпус колонны; 2 – тарелки; 3 – сливной карман увеличенного размера; 4 – сборная (глухая) тарелка; 5, 6 – патрубки для прохода паров и отвода жидкости; 7 – уравнительная труба

Читайте также:  За своей тарелкой следи

Рассмотренные типы контактных устройств относятся к наиболее распространенным для условий работы блоков АТ-АВТ. К настоящему времени разработаны и другие эффективные конструкции КУ [6-10], которые могут представлять интерес при решении задач проектирования. Надо при этом отметить, что какой-либо универсальной конструкции, пригодной для любых условий эксплуатации, выделить нельзя. Каждая конкретная задача проектирования должна решаться с учетом технологии производства на основе обобщения опыта работы родственных установок.

Источник

Типы тарельчатых колонн. Теоретическая и физическая тарелка. КПД колонны.

Тарельчатая колонна предназначена для разделения спиртосодержащей смеси на составляющие с последующим отбором этилового спирта, максимально очищенного от примесей.

Колонна с колпачковыми тарелками наиболее технологична, универсальна и удобна для домашней ректификации.
Подробно о колпачковой тарелке, принципе её работы и преимуществах здесь.

Другие виды тарельчатых колонн:

Ситчатая тарелка.
Самая простая конструкция тарельчатой колонны. Состоит из сита и переливной трубки. Флегма не протекает вниз сквозь сито, пока есть напор пара снизу. При превышении уровня барботируемой флегмы над уровнем края переливной трубки, флегма стекает на низлежащую тарелку.
Главные минусы ситчатой тарелки — необходима тонкая настройка всей системы и поддержание всех параметров в процессе перегонки на постоянной величине.


Ситчатая двухуровневая тарелка

Провальная тарелка.
В отличии от ситчатой, на провальной тарелке нет трубки для перелива флегмы. Удержание флегмы паром возможно только при определённом уровне, как только флегмы становится больше заданного значения, силы пара становится недостаточно и часть флегмы проваливается вниз.


Провальные тарелки из нержи и меди

Вихревая (или спирально-струйная) тарелка.
Принцип работы такой же, как и у провальной. Отличие в том, что пар из отверстий выходит под углом и создаёт вихревой поток для увеличения тепломассобмена.


Вихревые тарелки

Клапанная тарелка.
Используется в промышленности. На тарелке расположены клапана, которые открываются и закрываются в зависимости от давления пара.


Клапанная тарелка

Теоретическая тарелка ректификационной колонны (ТТ).

Если мы возьмём 10% раствор этилового спирта в воде и перегоним его один раз, то получим продукт примерно 40%.
Вторая перегонка даст нам укрепление уже 60%, третья — 70%, четвёртая — 75% и т. д.
Спирт 96% мы получим за 9-10 перегонок исходного 10%-ного раствора.

Каждая такая перегонка будет являться так называемой теоретической тарелкой — то есть количество теоретических тарелок показывает количество перегонок, которые потребуются для данного аппарата для получения 96% спирта из 10%-ного его раствора в воде.

Но поскольку мы отбираем спирт не из чистой воды, а из браги, в которой содержится более ста примесей, то понадобится порядка 25-50 перегонок, или, что одно и тоже — теоретических тарелок.

Физическая тарелка ректификационной колонны — это контактное устройство внутри колонны, на котором происходит максимальное соприкосновение пара и жидкости с последующим тепломассообменом.

Физическая тарелка представляет собой горизонтальную перемычку круглой формы с различными устройствами для пропуска пара и слива флегмы. Как правило тарелка герметично закрепляется в колонне с помощью резьбовых шпилек и ограничителей.

КПД тарельчатой колонны.

Производительность физической тарелки всегда будет отличаться в меньшую сторону от расчётных значений теоретической тарелки.
На эффективность работы ФТ будут влиять различные параметры: конструктивные особенности колонны и всего аппарата, вязкость жидкости, коэффициент диффузии, тепловые потери, пути движения флегмы и прочее.
Опытным путём доказано, что КПД физической тарелки составляет примерно 50-60% от теоретической.

Источник

Поделиться с друзьями
Adblock
detector