Определение числа тарелок методом теоретической тарелки



Основы расчета массообменных аппаратов , страница 2

Расчет высоты аппарата через число теоретических ступеней (тарелок). Под теоретической ступенью контакта фаз понимают одновременное изменение концентраций распределяемого вещества в обеих фазах до равновесных. Метод определения высоты аппарата через число теоретических ступеней, как указывалось ранее, характерен для колонных аппаратов, у которых контакт фаз происходит ступенчато на контактных устройствах (тарелках), расположенных по их высоте (рис. 31.1).

Гипотетически отдающая фаза Фу с концентрацией распределяемого компонента ун приходит в равновесие на тарелке 1 с фазой Фх, покидающей эту тарелку с концентрацией хк. При этом концентрация в фазе Фу падает до у1. На тарелке 2 концентрация распределяемого компонента падает до у2 соответственно равновесной концентрации в фазе Фхх1 и т.д. С последней тарелки (по ходу фазы Фу) фаза Фу уходит с концентрацией ук, а фаза Фх – с равновесной концентрацией, соответствующей данной тарелке.

Таким образом, на тарелке 1 за счет падения концентрации распределяемого компонента в фазе Фу от ун до у1 повышается его концентрация в фазе Фх от х1 до хк; на тарелке 2 концентрации соответственно изменяются от у1 до у2, от х2 до х1 и т.д. Число теоретических тарелок, необходимое для осуществления заданного массообмена, можно определить непосредственно графическим построением в пределах заданных концентраций или найти аналитически, путем совместного решения уравнений рабочей линии и линии равновесия.

Аналитический способ определения числа теоретических тарелок применим лишь для линейной равновесной зависимости и на практике редко используется. Графическое определение числа теоретических тарелок дает наиболее наглядное представление о процессе.

Для графического определения числа теоретических ступеней Nт на диаграмму состава х–у наносят рабочую и равновесную линии (рис. 31.2). Затем в пределах концентраций хнхк вписывают между ними ломаную линию. Число точек пересечения ломаной линии с равновесной дает число теоретических ступеней.

Рисунок 31.2 – К определению числа теоретических ступеней графическим способом

В реальных массообменных аппаратах, вследствие кратковременного взаимодействия фаз и недостаточной поверхности фазового контакта, на каждой тарелке равновесие не достигается, поэтому число действительных тарелок Nд больше числа теоретических (Nд >Nт). Отношение Nд/Nт = h выражает средний коэффициент полезного действия реальных тарелок, при этом h 2 3 4

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читайте также:  Тарелки с фигурными краями

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Расчет числа тарелок в отгонной части колонны

ОПРЕДЕЛЕНИЕ ЧИСЛА ТЕОРЕТИЧЕСКИХ ТАРЕЛОК ГРАФИЧЕСКИМ МЕТОДОМ

Одной из основных целей расчета ректификационной колонны является определение числа тарелок, необходимых для разделения данной смеси на ректификат состава yD и остаток состава xW , при принятых величинах флегмового и парового чисел и известной кривой равновесия фаз x — y (рисунки 9.1 и 9.2). .Теоретической тарелкой (теоретической ступенью контакта) называется такое контактное устройство, которое обеспечивает получение равновесных потоков фаз, покидающих контактную зону.

Расчет числа тарелок в концентрационной части колонны

Пусть требуется получить ректификат с составом yD. Рабочая линия BD верхней части колонны проходит через точку D с координатами x=y=yD . Пары ректификата yD были получены после прохождения паров, поднимающихся с верхней тарелки колонны, через парциальный конденсатор, где часть паров сконденсировалась, создав поток флегмы g . Состав этой жидкости xD* находится в равновесии с парами ректификата, и поэтому может быть найден при пересечении ординаты yD с кривой равновесия (точка 1). Абсцисса точки 1 равна xD*. Поступившая на верхнюю тарелку концентрационной части колонны, имеющую номер Nk , жидкость состава xD* будет контактировать с паром, поднимающимся с нижележащей тарелки. В результате образуются потоки паров состава и жидкости состава. Составы xD* и относятся к встречным потокам и поэтому будут связаны уравнением рабочей линии. На рисунке им соответствует точка 2. Ордината точки 2 определяет состав паров .

Составы и потоков, покидающих данную тарелку, находятся в равновесии, следовательно, на диаграмме x — y будут представлены точкой 3, абсцисса которой равна . Продолжая аналогичные рассуждения, определим точку 10. Построение ее завершается, когда состав жидкости x1, стекающий с нижней тарелки концентрационной части колонны, и состав паров ym . .поступающих из зоны питания, будут отвечать заданным. Нетрудно убедиться, что число ступеней между равновесной и рабочей линиями соответствует числу тарелок, в данном случае Nk= 5.

Читайте также:  Имеющуюся тарелку для триколор

Следует отметить, что первая ступень изменения концентраций связана с наличием парциального конденсатора. В случае других способов отвода тепла эта ступень соответствует верхней тарелке колонны .

Р Рисунок 9.1 Определение числа тарелок в концентрационной части колонны

Расчет числа тарелок в отгонной части колонны

Число тарелок в отгонной части колонны определяют аналогичными построениями (рисунок 9.2) . Рабочая линия WC определяется положением точки, имеющей координаты x=y=xw . При подводе тепла QB в низ колонны образовавшиеся пары состава y w* будут находиться в равновесии с уходящим из колонны остатком состава Указанные составы будут определятся кривой равновесия (точка 1) . Ордината точки 1 равна y w*.

Пары состава y w* встречаются с жидкость состава x1 , стекающей с нижней тарелки, т.е. они отвечают уравнению рабочей линии (точка 2). Абсцисса точки 2 дает состав флегмы x1. Проводя соответствующие построения, получим ступенчатую линию W , 1, 2, 3, 4, 5, 6, 7, 8. Координаты точки 8, лежащей на рабочей линии, определяют составы паров , поднимающихся с верхней тарелки отгонной части колонны, и жидкости xm, стекающей из зоны питания. В данном случае число тарелок No= 4.

Из приведенных графических построений можно заключить, что число тарелок в верхней и нижней частях колонны зависит соответственно от флегмового и парового числа, т.е. от положения рабочей линии. Увеличение флегмового и парового числа приближает рабочие линии к диагонали ОА, что связано с уменьшением числа тарелок. Наоборот, когда флегмовое и паровое числа уменьшается, рабочие линии приближаются к кривой равновесия и число тарелок увеличивается. При режиме полного орошения (т.е. отсутствии выхода дистиллята и остатка)

число тарелок минимальное. Таким образом, при сокращении нагрузки в колонне четкость разделения увеличивается. Чем меньше флегмовое число, тем больше производительность, тем четкость разделения меньше.

Читайте также:  Схема подключения две тарелки два ресивера

Также в исследовательской практике режим полного орошения используется для определения числа теоретических (равновесных) тарелок .

У С а

Рисунок 9.2 Определение числа тарелок в отгонной части колонны

Расчет зоны питания

Схема потоков в зоне питания (эвапораторе или питательной зоне) приведена на рисунке 9.3.

Материальный баланс процесса однократного испарения в зоне подачи сырья :

Первое уравнение подставим во второе и поделим на F

( 50 )

где доля отгона при вводе сырья в колонну

Определим крайние точки этой прямой

Точка А y=0

Точка В x=0

Прямая BA соответствует уравнению при данной доле отгона сырья. Составы паров и жидкости и при входе в колонну определяются на пересечении кривой равновесия и линии сырья (точка Н). Продлим точку Н до пересечения оперативных линий и нижней части колонн (точка а и точка в). Соединим точки ав , получим линию ав – оперативную линию зоны питания и составы встречных неравновесных потоков пара и жидкости и будут определятся линией ав. Таким образом, переход от концентрационной к отгонной части колонны осуществляется через одну точку h , находящуюся на линии ab.

На рисунке 9.3 приведено построение составов потоков, проходящих через зону питания, что обеспечивает правильный переход от верхней части колонны к нижней при определении числа тарелок.

Рисунок 9.3 Графическое определение числа теоретических тарелок на диаграмме x-y/

Источник

Поделиться с друзьями