Контактный элемент насадка тарелка

Насадка и где в ней тарелки

В малых ректификационных колоннах вместо тарелок применяется насадка. Она может быть регулярной (вставной) или хаотической (насыпной). Эти контактные элементы заполняют собой весь внутренний объём ректификационной части колонны.

Тепломассообмен в насадке происходит не на поверхности пузырьков, как в тарельчатых колоннах, а между тонким слоем флегмы, покрывающим материал насадки и паром, движущимся в свободном пространстве (в объёме насадки).

Для образования на насадке этого тонкого слоя флегмы её конструкция должна обладать развитой и хорошо смачиваемой поверхностью. А для турбулентного движения пара в насадке она должна образовывать каналы «замысловатой» формы.

Насадка по своему внешнему виду (на фотографии показана «спирально-призматическая 4мм» насадка в стеклянной трубе) многими воспринимается как некоторый фильтр, который должен иметь определённый срок службы, а потом заменяться. Однако это не так. Насадка — тепломассообменный наполнитель колонны, по которому вниз течёт чистый дистиллят (флегма), а вверх поднимается чистый пар. Таким образом, если оба этих компонента действительно не содержат посторонних включений (пены и взвеси), а насадка выполнена из коррозионностойкого материала, то это контактное устройство будет выполнять свои функции в колонне неограниченно долго. Наша первая ректификационная колонна 1986 года работает у нас до сих пор.

Различные типы насадок.

Ниже приведены достаточно распространенные типы насадок:

Кольца Рашига
Спирально-призматическая
Зульцер классический
Зульцер рулонный
Стедман прямой
Стедман наклонный

В наших спиртовых ректификационных колоннах мы используем два типа насадок (а сейчас все чаще их комбинацию):

  • хаотичную «спирально-призматическуюя» (с характерным размером от 3 мм до 10 мм);
  • регулярную «Зульцер рулонный» (с глубиной гофра от 1 мм до 2,5 мм).

В лабораторной ректификации существует также группа контактных устройств, которые не занимают собой весь внутренний объем царги и не являются в классической трактовке ни тарелками, ни насадкой, а относятся к элементам пленочной ректификации. Например:

  • поперечные шайбы и диски из сетки, чередующиеся через разграничители;
  • усеченные сетчатые конусы с боковыми полуокнами, установленные с чередованием положения вершины конуса вверх и вниз;
  • гармошка, сложенная из сетчатых полос;
  • однозаходная или многозаходная спираль Архимеда;
  • вертикальные струны (стержни, мелкие цепочки, бусы, тросы, и т.п.), по которым тонким слоем течет флегма, а пар движется параллельно этой конструкции.

Мы эти контактные элементы не применяем, но эффект пленочной ректификации используем в наших вертикальных дистилляторах.

Наверняка у Вас возник вопрос: «Зачем такое многообразие насадок? Неужели среди них нет ОДНОЙ самой лучшей ?»

Ответ неоднозначен. Дадим ответ на примере назначения автомашин:

Автомашины бывают грузовые, легковые, пожарные . — но ведь каждая из них лучше других для решения конкретной задачи !

Источник

Типы ректификационных тарелок

Виды тарелок

В колонных аппаратах НПЗ в настоящее время используются десятки конструкций контактных устройств, отличающихся по своим характеристикам и технико-экономическим показателям. Наряду с тарелками первого поколения (колпачковые, желобчатые), которые до сих пор эксплуатируются на старых производствах, широкое распространение на установках АВТ получили S-образные, клапанные (пластинчатые, дисковые) и другие типы КУ.

Тарелки клапанные, колпачковые, ситчатые

Колпачковые

Ситчатые

Решетчатые

С S-образными элементами

Клапанные (дисковые)

Область применения различных типов тарелок

Основные характеристики сравнения

Нередки случаи, когда в одной ректификационной колонне в разных секциях используются тарелки разных типов. Это объясняется тем, что паровые и жидкостные нагрузки по высоте нефтяных колонн, особенно работающих с боковыми отборами, существенно различаются (иногда на порядок). При сравнении контактных устройств различного типа в качестве основных обычно выступают следующие показатели:

  • Производительность.
  • Гидравлическое сопротивление.
  • Эффективность (коэффициент полезного действия) – характеризует степень приближения реального процесса разделения на тарелке к теоретически достижимому (теоретическая тарелка).
  • Допустимый диапазон варьирования рабочих нагрузок (и по пару, и по жидкости), который определяется отношением максимально допустимой нагрузки к минимально допустимой.
  • Градиент уровня жидкости по ширине полотна тарелки, который определяется тем обстоятельством, что жидкость на тарелку вводится с одного края тарелки (секции), а отводится с другого. При течении жидкости по полотну тарелки она преодолевает определенное гидравлическое сопротивление, поэтому высота слоя жидкости у приемного кармана превышает соответствующий уровень у сливного кармана. Наличие градиента приводит к нарушению равномерности распределения пара по ширине барботажного слоя и в итоге – к снижению эффективности КУ.
  • Высота межтарельчатого расстояния, которая должна обеспечивать нормальную работу гидравлического затвора для обеспечения гарантированного перетока жидкости с верхней тарелки на нижнюю.
  • Обеспечение длительной работоспособности при работе на загрязненных средах и средах, склонных к образованию смолистых или других отложений.
  • Металлоемкость.
  • Стоимость.
  • Удобство монтажа и ремонта, простота конструкции.
Читайте также:  Как удалить клей с тарелок

Расчет отводимого тепла выносным орошением

Для сложных колонн, работающих с выносными холодными циркуляционными орошениями, к которым относятся и колонны АВТ, весьма важной становится ещё одна специфическая характеристика: величина реализуемого теплосъема от внутреннего парового потока холодным орошением – Q, (кВт/м 3 ). В этой характеристике величина достигаемого теплосъема отнесена к 1 м 3 барботажного слоя или к 1 м 3 насадки. В отечественной литературе данная характеристика учитывается достаточно редко, хотя она в значительной мере определяет эффективность работы циркуляционных орошений.

Количество тепла, отводимого от циркуляционного орошения во внешнем теплообменнике, определяется:
Q=L(Hн-Hк)

Все это количество тепла затрачивается внутри колонны на конденсацию части парового орошения, а энтальпия жидкого потока достигает при этом значения Hн. В процедуре технологического расчета, который, как правило, проводится по «теоретическим тарелкам» процесс теплообмена будет завершен на первом же КУ. Фактически же именно реальная эффективность процесса теплосъема на КУ будет определять, на скольких реальных тарелках будет завершен этот процесс.

Выбор оптимальной конструкции контактных устройств

Конструкции КУ, выигрывающей у всех остальных конструкций по всем показателям, не существует. Каждая из конструкций обладает своими преимуществами и недостатками и своей областью рационального использования. В зависимости от особенностей конкретного процесса наибольшее значение могут приобретать те или иные характеристики из вышеперечисленных. Так, на выбор КУ для колонн атмосферного блока наибольшее влияние оказывают показатели производительности, эффективности и допустимого значения диапазона рабочих нагрузок, в котором обеспечивается высокая эффективность работы тарелок. Для колонн вакуумного блока на первое место выдвигается гидравлическое сопротивление КУ, поскольку оно будет определять интенсивность процесса разложения тяжелых углеводородов в зоне нагрева, а значит, в значительной мере и качество товарных фракций, хотя и в этом случае должны, конечно, учитываться и остальные характеристики. Наиболее распространенные типы КУ приведены на рисунке.

В атмосферных колоннах хорошо зарекомендовали себя различные модификации клапанных КУ с дисковыми, прямоугольными и трапециевидными клапанами, а также комбинированные S-образные тарелки с клапанами. В вакуумных колоннах представляет интерес использование дисковых клапанов эжекционного типа, которые характеризуются наименьшим гидравлическим сопротивлением среди всех типов КУ.

Рис. 3.1. Распространенные типы колпачков и клапанов:

Колпачки: а – круглый; б – шестигранный; в – прямоугольный; г – желобчатый; д – S-образный; клапаны: е – прямоугольный; ж – круглый с нижним ограничителем; з – круглый с верхним ограничителем; и – балластный; к – дисковый эжекционный перекрестноточный; л – пластинчатый перекрестно-прямоточный; м – S-образный колпачок с клапаном.
Обозначения: 1 – диск тарелки; 2 – клапан; 3 – ограничитель; 4 – балласт.

Переливные устройства тарелок

Для организации перелива рабочей жидкости с вышележащей тарелки на нижележащую в КУ используются специальные переливные устройства, включающие в себя сливную перегородку и карман (рис. 3.2). При больших значениях удельных нагрузок по жидкости (измеряется через расход фазы – м 3 /час отнесенный к 1 м 2 сечения колонны или к 1 м длины сливной перегородки), что характерно для многотоннажных колонн установок АТ-АВТ, для снижения градиента уровня жидкости применяются многопоточные конструкции КУ (от 2-х до 4-х потоков). Сливные карманы могут быть использованы также для подвода на КУ промежуточных потоков (холодные орошения) и/или для отвода боковых отборов (рис. 3.3). В последнем случае объемная емкость кармана наращивается за счет увеличения межтарельчатого расстояния, что повышает надежность работы откачивающего насоса.

Рис. 3.2. Устройство узлов перетока жидкости с тарелки на тарелку и ввода орошений для однопоточных (а) и двухпоточных (б) тарелок: 1 – корпус колонны; 2 – секции тарелок; 3, 4 – коллекторы ввода жидкости на верхнюю и промежуточную тарелки; 5, 6 – сливные карманы

Массо – теплообмен между взаимодействующими фазами (пар – жидкость) протекает на КУ в барботажном слое: структуре, которая образуется при истечении парового потока из небольших отверстий или щелей, выполненных в полотне тарелки или в специальных устройствах (колпачках), в слой жидкости под небольшим избыточным давлением. Эта структура представляет собой ансамбль пузырьков, размер которых измеряется миллиметрами. Паровые пузырьки зарождаются при истечении газа, всплывают в слое жидкости за счет разности плотностей жидкой и паровой фаз и разрушаются на верхней границе барботажного слоя. Размер пузырьков определяется свойствами паровой и жидкой фаз (плотность, вязкость, поверхностное натяжение, …), конструкцией КУ и гидродинамическими условиями взаимодействия фаз. Суммарная поверхность массообмена в барботажном слое измеряется десятками и даже сотнями м 2 поверхности, приходящихся на 1 м 3 объема барботажного слоя.

Рис. 3.3. Узлы вывода боковых погонов (жидкость) из колонны: 1 – корпус колонны; 2 – тарелки; 3 – сливной карман увеличенного размера; 4 – сборная (глухая) тарелка; 5, 6 – патрубки для прохода паров и отвода жидкости; 7 – уравнительная труба

Рассмотренные типы контактных устройств относятся к наиболее распространенным для условий работы блоков АТ-АВТ. К настоящему времени разработаны и другие эффективные конструкции КУ [6-10], которые могут представлять интерес при решении задач проектирования. Надо при этом отметить, что какой-либо универсальной конструкции, пригодной для любых условий эксплуатации, выделить нельзя. Каждая конкретная задача проектирования должна решаться с учетом технологии производства на основе обобщения опыта работы родственных установок.

Читайте также:  Определение угла наклона тарелки

Источник

Классификация ректификационных колонн и их контактных устройств

Применяемые в нефте- и газопереработке ректификационные колонны подразделяются:

  1. по назначению:
  • для атмосферной и вакуумной перегонки нефти и мазута;
  • вторичной перегонки бензина;
  • стабилизации нефти, газоконденсатов, нестабильных бензинов;
  • фракционирования нефтезаводских, нефтяных и природных газов;
  • отгонки растворителей в процессах очистки масел;
  • разделения продуктов термодеструктивных и каталитических процессов переработки нефтяного сырья и газов и т. д.;
  1. по способу межступенчатой передачи жидкости:
  • с переточными устройствами (с одним, двумя или более);
  • без проточных устройств провального типа;
  1. по способу организации контакта парогазовой и жидкой фаз:
  • тарельчатые;
  • насадочные;
  • роторные.

По типу применяемых контактных устройств наибольшее распространение получили тарельчатые, а также насадочные ректификационные колонны.

В ректификационных колоннах применяются сотни различных конструкций контактных устройств, существенно различающихся по своим характеристикам и технико-экономическим показателям. При этом в эксплуатации находятся наряду с самыми современными конструкциями контактные устройства таких типов (например, желобчатые тарелки и др.), которые, хотя и обеспечивают получение целевых продуктов, но не могут быть рекомендованы для современных и перспективных производств.

При выборе типа контактных устройств обычно руководствуются следующими основными показателями:

  • производительностью;
  • гидравлическим сопротивлением;
  • коэффициентом полезного действия;
  • диапазоном рабочих нагрузок;
  • возможностью работы на средах, склонных к образованию смолистых или других отложений;
  • материалоемкостью;
  • простотой конструкции, удобством изготовления, монтажа и ремонта.

Чтобы легче ориентироваться во всем многообразии имеющихся конструкций, на рис. 3.9 мы приводим классификацию контактных устройств, применяемых не только в ректификационных, но и абсорбционных и экстракционных процессах разделения смесей. В соответствии с ней тарельчатые контактные устройства подразделяются:

  • по способу организации относительного движения потоков контактирующих фаз – на противоточные, прямоточные, перекрестноточные и перекрестнопрямоточные;
  • по регулируемости сечения контактирующих фаз – на тарелки с нерегулируемым и регулируемым сечениями.

Насадочные контактные устройства принято подразделять на следующие два типа: нерегулярные и регулярные.

Противоточные тарелки характеризуются высокой производительностью по жидкости, простотой конструкции и малой металлоемкостью. Основной их недостаток – низкая эффективность и узкий диапазон устойчивой работы, неравномерное распределение потоков по сечению колонны, что существенно ограничивает их применение.

Прямоточные тарелки отличаются повышенной производительностью, но умеренной эффективностью разделения, повышенным гидравлическим сопротивлением и трудоемкостью изготовления, они предпочтительны для применения в процессах разделения под давлением.

К перекрестноточным типам тарелок, получившим в современной технологии переработки нефти и газа преимущественное применение, относятся:

  1. тарелки с нерегулируемым сечением контактирующих фаз следующих конструкций: ситчатые, ситчатые с отбойниками, колпачковые с круглыми, прямоугольными, шестигранными, S-образными, желобчатыми колпачками (рис. 3.10а–д);
  2. тарелки с регулируемым сечением следующих конструкций: клапанные с капсульными, дисковыми, пластинчатыми, дисковыми эжекционными клапанами; клапанные с балластом; комбинированные колпачково-клапанные (например, S-образные и ситчатые с клапаном) (рис. 3.10е–к) и др.

Перекрестноточные тарелки характеризуются в целом (за исключением ситчатых) наибольшей разделительной способностью, поскольку время пребывания жидкости на них наибольшее по сравнению с другими типами тарелок. К недостаткам колпачковых тарелок следует отнести низкую удельную производительность, относительно высокое гидравлическое сопротивление, большую металлоемкость, сложность и высокую стоимость изготовления.

Ситчатые тарелки с отбойниками имеют относительно низкое гидравлическое сопротивление, повышенную производительность, но более узкий рабочий диапазон по сравнению с колпачковыми тарелками. Применяются преимущественно в вакуумных колоннах.

Клапанные и балластные тарелки получают за последнее время все более широкое распространение, особенно для работы в условиях значительно меняющихся скоростей газа, и постепенно вытесняют старые конструкции контактных устройств. Принцип действия клапанных тарелок состоит в том, что свободно лежащий над отверстием в тарелке клапан различной формы автоматически регулирует величину площади зазора между клапаном и плоскостью тарелки в зависимости от газопаровой нагрузки и тем самым поддерживает постоянной (в пределах высоты подъема клапана) скорость газа и, следовательно, гидравлическое сопротивление тарелки в целом. Высота подъема клапана ограничивается высотой ограничителя (кронштейна, ножки).

Балластные тарелки отличаются по устройству от клапанных тем, что в них между легким клапаном и ограничителем установлен более тяжелый, чем клапан, балласт. Клапан начинает приподниматься при небольших скоростях газа или пара. С дальнейшим увеличением скорости газа клапан упирается в балласт и затем поднимается вместе с ним. В результате балластная тарелка, по сравнению с чисто клапанной, значительно раньше вступает в работу, имеет более широкий рабочий диапазон, более высокую (на 15…20 %) эффективность разделения и пониженное (на 10…15 %) гидравлическое сопротивление.

Более прогрессивны и эффективны, по сравнению с колпачковыми, комбинированные колпачково-клапанные тарелки. Так, S-образная тарелка с клапаном работает следующим образом: при низких скоростях газ (пар) барботирует преимущественно через прорези S-образных элементов, и при достижении некоторой скорости газа включается в работу клапан. Такая двухстадийная работа тарелки позволяет повысить производительность ректификационной колонны на 25…30 % и сохранить высокую эффективность разделения в широком диапазоне рабочих нагрузок.

Читайте также:  Как украсить тарелку с блинчиками

Перекрестно-прямоточные тарелки отличаются от перекрестноточных тем, что в них энергия газа (пара) используется для организации направленного движения жидкости по тарелке, тем самым устраняется поперечная неравномерность и обратное перемешивание жидкости на тарелке и в результате повышается производительность колонны. Однако эффективность контакта в них несколько меньше, чем в перекрестноточных тарелках.

Среди клапанных тарелок нового поколения можно отметить дисковые эжекционные (перекрестноточные) и пластинчатые перекрестно-прямоточные тарелки, внедрение которых на ряде НПЗ страны позволило улучшить технико-экономические показатели установок перегонки нефти (рис. 3.10к, л).

Эжекционная клапанная тарелка представляет собой полотно с отверстиями (∅ 90 мм) и переливными устройствами. В отверстия полотна тарелок устанавливаются клапаны, представляющие собой вогнутый диск (∅ 110 мм) с просечными отверстиями (каналами) для эжекции жидкости, имеющий распределительный выступ для равномерного стока жидкости в эжекционные каналы. Клапаны имеют 4 ограничительные ножки и 12 эжекционных каналов. Они изготавливаются штамповкой из нержавеющей стали толщиной 0,8. 1,0 мм. Масса одного клапана составляет всего 80…90 г (а капсульного с паровым пространством — 5…6 кг).

При минимальных нагрузках по парам клапаны работают в динамическом режиме. При увеличении нагрузки клапаны приподнимаются в пределе до упора ограничителей и начинается эжекция жидкости над клапанами, что способствует более интенсивному перемешиванию жидкости в надклапанном пространстве. Распределительный выступ на клапане при остановке колонны способствует полному стоку жидкости с тарелки.

Опытно-промышленные испытания показали высокие эксплуатационные их достоинства: устойчивость и равномерность работы в широком диапазоне нагрузок без уноса жидкости; исключительно высокий КПД (≈ 80…100 %), высокая производительность, превышающая на ≈ 20 % производительность колпачковых тарелок, и т. д.

Сравнение эффективности некоторых конструкций тарельчатых контактных устройств приведено на рис. 3.11. Видно, что лучшими показателями по гидравлическому сопротивлению обладают тарелки ситчатые и S-образные с клапанами, а по КПД — клапанная балластная и S-образная с клапаном.

Следует отметить, что универсальных конструкций тарелок, эффективно работающих «всегда и везде», не существует. При выборе конкретного типа тарелок из множества вариантов следует отдать предпочтение той конструкции, основные (не обязательно все) показатели эффективности которой в наибольшей степени удовлетворяют требованиям, предъявляемым исходя из функционального назначения ректификационных колонн. Так, в вакуумных колоннах предпочтительно применение контактных устройств, имеющих как можно меньшее гидравлическое сопротивление.

Насадочные колонны применяются преимущественно в малотоннажных производствах и при необходимости проведения массообменных процессов с малым перепадом давления.

К насадкам предъявляются следующие основные требования:

  1. большая удельная поверхность;
  2. хорошая смачиваемость жидкостью;
  3. малое гидравлическое сопротивление;
  4. равномерность распределения жидких и газовых (паровых) потоков;
  5. высокие химическая стойкость и механическая прочность;
  6. низкая стоимость.

Насадок, полностью удовлетворяющих всем указанным требованиям, не существует, поскольку некоторые из требований противоречивы, например, пункты 1 и 3. При нормальной эксплуатации насадочных колонн массообмен происходит в основном в пленочном режиме на смоченной жидкостью поверхности насадок. Естественно, чем больше удельная поверхность насадки, тем эффективнее массообменный процесс. Однако насадки с высокой удельной поверхностью характеризуются повышенным гидравлическим сопротивлением. В химической промышленности и нефтегазопереработке применяют разнообразные по форме и размерам насадки, изготавливаемые из различных материалов (керамика, фарфор, сталь, пластмассы и др.) (рис. 3.12).

Основной недостаток нерегулярных (насыпных) насадок, ограничивающий их применение в крупнотоннажных производствах, – неравномерность распределения контактирующих потоков по сечению аппарата. Регулярные насадки, изготавливаемые из сетки, перфорированного металлического листа, многослойных сеток и т. д., обеспечивают более однородное, по сравнению с традиционными насадками из колец и седел, распределение жидкости и пара (газа) в колоннах. Кроме того, они обладают исключительно важным достоинством, таким как низкое гидравлическое сопротивление — в пределе до 1…2 мм рт. ст. (130…260 Па) на 1 теоретическую тарелку. По этому показателю они значительно превосходят любой из известных типов тарельчатых контактных устройств. В этой связи в последние годы за рубежом и в нашей стране начаты широкие научно-исследовательские работы по разработке самых эффективных и перспективных конструкций регулярных насадок и широкому применению их в крупнотоннажных производствах, в том числе в таких процессах нефтепереработки, как вакуумная и глубоковакуумная перегонка мазутов. На НПЗ ряда развитых капиталистических стран вакуумные колонны установок перегонки нефти в настоящее время оснащены регулярными насадками, что позволяет обеспечить глубокий вакуум в колоннах и существенно увеличить отбор вакуумного газойля и достичь температуры конца кипения до 600 °С.

ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ПРОЦЕССОВ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА, С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов, 2006

Источник

Поделиться с друзьями