Клапанную тарелку с рисунком

Клапанные тарелки

Клапанные тарелки также широко применяют в нефтехимической промышленности. Основные преимущества этих тарелок — способность обеспечить эффективный массообмен в большом интервале рабочих нагрузок, несложность конструкции, низкая металлоемкость и невысокая стоимость.

Клапанные тарелки изготовляют с дисковыми и прямоугольными клапанами; работают тарелки в режиме прямоточного или перекрестного движения фаз. В отечественной промышленности наиболее распространены клапанные прямоточные тарелки с дисковыми клапанами. На клапанной прямоточной тарелке (рис. 2.9) в шахматном порядке расположены отверстия, в которых установлены саморегулирующиеся дисковые клапаны диаметром 50 мм, способные подниматься при движении пара (газа) на высоту до 6—8 мм.

Рис. 2.9. Клапанно-прямоточная тарелка

Дисковый клапан снабжен тремя направляющими, расположенными в плане под углом 45°; две из этих направляющих имеют большую длину. Кроме того, на диске клапана штамповкой выполнены специальные упоры, обеспечивающие начальный зазор между диском и тарелкой; это исключает возможность «прилипания» клапана к тарелке (рис. 2.9, а, положение I). При небольшой производительности по пару поднимается легкая часть клапана (рис. 2.9, положение II) и пар выходит через щель между клапаном и полотном тарелки в направлении, противоположном направлению движения жидкости по тарелке. С увеличением скорости пара клапан поднимается и зависает над тарелкой (рис. 2.9, положение III); теперь пар барботирует в жидкость через кольцевую щель под клапаном. При дальнейшем увеличении производительности по пару клапан занимает положение, при котором пар выходит в направлении движения жидкости, уменьшая разность уровней жидкости на тарелке (рис. 2.9, положение IV). При этом короткая направляющая фиксируется в специальном вырезе на кромке отверстия, обеспечивая заданное положение клапана при его подъеме.

Эффективность клапанных прямоточных тарелок (КПД) 0.70— 0,85, F 3 ) -0.5 , диапазон устойчивой работы 3,5. В области саморегулируемой работы тарелки обладают относительно небольшим гидразлическим сопротивлением.

Для увеличения производительности и диапазона устойчивой работы клапанные тарелки выполняют балластными (рис. 2.10). Над отверстием тарелки 1 на специальных ножках установлены ограничители подъема 4, а внутри их — на ножках 7 легкий клапан 5 и балласт 2. Для исключения прилипания клапана к балласту имеются упоры 3 и 6. При малой производительности по газу тарелка работает как обычная с дисковыми клапанами меньшей массы; при увеличении нагрузки клапан 5 упирается в балласт и работает совместно с ним как один утяжеленный клапан.

Рис. 2.10. Клапанная балластная тарелка

Балластные клапанные тарелки можно выполнять как с индивидуальным, так и с групповым балластом. Примером последнего варианта могут служить балластные тарелки ректификационных колонн (рис. 2.11). Такая тарелка 1 имеет расположенные в несколько рядов прямоугольные вырезы, закрытые клапанами 2 прямоугольной формы. Большие размеры клапанов (154 x45 мм) позволяют уменьшить их число по сравнению с дисковыми клапанами в 2-4 раза. Над клапанами расположен общий подвижный балласт 3, выполненный из прутка диаметром 8 мм. При работе, таких тарелок вначале поднимается пластина клапана, затем она упирается в балласт и поднимается вместе с ним до упора в головку винта 4.

Рис. 2.11. Тарелка с групповым балластом

Клапанная тарелка со штампованными клапанами цилиндрической формы показана на рис. 2.12, а. Клапан I, лежащий на полотне тарелки 2, представляет собой часть цилиндра с ограничителями подъема 3. Клапан расположен в гнезде, имеющем отогнутую полку 4. Масса клапана, его конфигурация и положение центра тяжести подобраны так, что при достижении определенной скорости пара клапан перекатывается по поверхности отогнутой полки. При этом между плоскостью тарелки и клапаном образуется щель, через которую в направлении слива жидкости выходит пар. При значительной производительности по пару клапан поднимается и зависает над тарелкой.

Рис. 2.12. Тарелки клапанные

В жалюзийно-клапанной тарелке (рис. 2.12, б) щель для входа газа на тарелку 1 образуется при повороте плоских клапанов-жалюзей 3 вокруг их оси, укрепленной в рамке 2.

Читайте также:  Квадратная тарелка для супа

Источник

Типы ректификационных тарелок

Виды тарелок

В колонных аппаратах НПЗ в настоящее время используются десятки конструкций контактных устройств, отличающихся по своим характеристикам и технико-экономическим показателям. Наряду с тарелками первого поколения (колпачковые, желобчатые), которые до сих пор эксплуатируются на старых производствах, широкое распространение на установках АВТ получили S-образные, клапанные (пластинчатые, дисковые) и другие типы КУ.

Тарелки клапанные, колпачковые, ситчатые

Колпачковые

Ситчатые

Решетчатые

С S-образными элементами

Клапанные (дисковые)

Область применения различных типов тарелок

Основные характеристики сравнения

Нередки случаи, когда в одной ректификационной колонне в разных секциях используются тарелки разных типов. Это объясняется тем, что паровые и жидкостные нагрузки по высоте нефтяных колонн, особенно работающих с боковыми отборами, существенно различаются (иногда на порядок). При сравнении контактных устройств различного типа в качестве основных обычно выступают следующие показатели:

  • Производительность.
  • Гидравлическое сопротивление.
  • Эффективность (коэффициент полезного действия) – характеризует степень приближения реального процесса разделения на тарелке к теоретически достижимому (теоретическая тарелка).
  • Допустимый диапазон варьирования рабочих нагрузок (и по пару, и по жидкости), который определяется отношением максимально допустимой нагрузки к минимально допустимой.
  • Градиент уровня жидкости по ширине полотна тарелки, который определяется тем обстоятельством, что жидкость на тарелку вводится с одного края тарелки (секции), а отводится с другого. При течении жидкости по полотну тарелки она преодолевает определенное гидравлическое сопротивление, поэтому высота слоя жидкости у приемного кармана превышает соответствующий уровень у сливного кармана. Наличие градиента приводит к нарушению равномерности распределения пара по ширине барботажного слоя и в итоге – к снижению эффективности КУ.
  • Высота межтарельчатого расстояния, которая должна обеспечивать нормальную работу гидравлического затвора для обеспечения гарантированного перетока жидкости с верхней тарелки на нижнюю.
  • Обеспечение длительной работоспособности при работе на загрязненных средах и средах, склонных к образованию смолистых или других отложений.
  • Металлоемкость.
  • Стоимость.
  • Удобство монтажа и ремонта, простота конструкции.

Расчет отводимого тепла выносным орошением

Для сложных колонн, работающих с выносными холодными циркуляционными орошениями, к которым относятся и колонны АВТ, весьма важной становится ещё одна специфическая характеристика: величина реализуемого теплосъема от внутреннего парового потока холодным орошением – Q, (кВт/м 3 ). В этой характеристике величина достигаемого теплосъема отнесена к 1 м 3 барботажного слоя или к 1 м 3 насадки. В отечественной литературе данная характеристика учитывается достаточно редко, хотя она в значительной мере определяет эффективность работы циркуляционных орошений.

Количество тепла, отводимого от циркуляционного орошения во внешнем теплообменнике, определяется:
Q=L(Hн-Hк)

Все это количество тепла затрачивается внутри колонны на конденсацию части парового орошения, а энтальпия жидкого потока достигает при этом значения Hн. В процедуре технологического расчета, который, как правило, проводится по «теоретическим тарелкам» процесс теплообмена будет завершен на первом же КУ. Фактически же именно реальная эффективность процесса теплосъема на КУ будет определять, на скольких реальных тарелках будет завершен этот процесс.

Выбор оптимальной конструкции контактных устройств

Конструкции КУ, выигрывающей у всех остальных конструкций по всем показателям, не существует. Каждая из конструкций обладает своими преимуществами и недостатками и своей областью рационального использования. В зависимости от особенностей конкретного процесса наибольшее значение могут приобретать те или иные характеристики из вышеперечисленных. Так, на выбор КУ для колонн атмосферного блока наибольшее влияние оказывают показатели производительности, эффективности и допустимого значения диапазона рабочих нагрузок, в котором обеспечивается высокая эффективность работы тарелок. Для колонн вакуумного блока на первое место выдвигается гидравлическое сопротивление КУ, поскольку оно будет определять интенсивность процесса разложения тяжелых углеводородов в зоне нагрева, а значит, в значительной мере и качество товарных фракций, хотя и в этом случае должны, конечно, учитываться и остальные характеристики. Наиболее распространенные типы КУ приведены на рисунке.

В атмосферных колоннах хорошо зарекомендовали себя различные модификации клапанных КУ с дисковыми, прямоугольными и трапециевидными клапанами, а также комбинированные S-образные тарелки с клапанами. В вакуумных колоннах представляет интерес использование дисковых клапанов эжекционного типа, которые характеризуются наименьшим гидравлическим сопротивлением среди всех типов КУ.

Читайте также:  Роспись стеклянной тарелки акриловыми красками

Рис. 3.1. Распространенные типы колпачков и клапанов:

Колпачки: а – круглый; б – шестигранный; в – прямоугольный; г – желобчатый; д – S-образный; клапаны: е – прямоугольный; ж – круглый с нижним ограничителем; з – круглый с верхним ограничителем; и – балластный; к – дисковый эжекционный перекрестноточный; л – пластинчатый перекрестно-прямоточный; м – S-образный колпачок с клапаном.
Обозначения: 1 – диск тарелки; 2 – клапан; 3 – ограничитель; 4 – балласт.

Переливные устройства тарелок

Для организации перелива рабочей жидкости с вышележащей тарелки на нижележащую в КУ используются специальные переливные устройства, включающие в себя сливную перегородку и карман (рис. 3.2). При больших значениях удельных нагрузок по жидкости (измеряется через расход фазы – м 3 /час отнесенный к 1 м 2 сечения колонны или к 1 м длины сливной перегородки), что характерно для многотоннажных колонн установок АТ-АВТ, для снижения градиента уровня жидкости применяются многопоточные конструкции КУ (от 2-х до 4-х потоков). Сливные карманы могут быть использованы также для подвода на КУ промежуточных потоков (холодные орошения) и/или для отвода боковых отборов (рис. 3.3). В последнем случае объемная емкость кармана наращивается за счет увеличения межтарельчатого расстояния, что повышает надежность работы откачивающего насоса.

Рис. 3.2. Устройство узлов перетока жидкости с тарелки на тарелку и ввода орошений для однопоточных (а) и двухпоточных (б) тарелок: 1 – корпус колонны; 2 – секции тарелок; 3, 4 – коллекторы ввода жидкости на верхнюю и промежуточную тарелки; 5, 6 – сливные карманы

Массо – теплообмен между взаимодействующими фазами (пар – жидкость) протекает на КУ в барботажном слое: структуре, которая образуется при истечении парового потока из небольших отверстий или щелей, выполненных в полотне тарелки или в специальных устройствах (колпачках), в слой жидкости под небольшим избыточным давлением. Эта структура представляет собой ансамбль пузырьков, размер которых измеряется миллиметрами. Паровые пузырьки зарождаются при истечении газа, всплывают в слое жидкости за счет разности плотностей жидкой и паровой фаз и разрушаются на верхней границе барботажного слоя. Размер пузырьков определяется свойствами паровой и жидкой фаз (плотность, вязкость, поверхностное натяжение, …), конструкцией КУ и гидродинамическими условиями взаимодействия фаз. Суммарная поверхность массообмена в барботажном слое измеряется десятками и даже сотнями м 2 поверхности, приходящихся на 1 м 3 объема барботажного слоя.

Рис. 3.3. Узлы вывода боковых погонов (жидкость) из колонны: 1 – корпус колонны; 2 – тарелки; 3 – сливной карман увеличенного размера; 4 – сборная (глухая) тарелка; 5, 6 – патрубки для прохода паров и отвода жидкости; 7 – уравнительная труба

Рассмотренные типы контактных устройств относятся к наиболее распространенным для условий работы блоков АТ-АВТ. К настоящему времени разработаны и другие эффективные конструкции КУ [6-10], которые могут представлять интерес при решении задач проектирования. Надо при этом отметить, что какой-либо универсальной конструкции, пригодной для любых условий эксплуатации, выделить нельзя. Каждая конкретная задача проектирования должна решаться с учетом технологии производства на основе обобщения опыта работы родственных установок.

Источник

Доработанные тарелки клапанов

Тема данной статьи – тарелки клапана. На первый взгляд функция данной детали кажется достаточно простой, держать в сборе клапанные пружины. На самом деле, все не так просто, как кажется ))) От преднатяга пружин зависит такая характеристика двигателя, как верхний порог оборотов. Сделав усилие пружин на сжатие маленьким, мы получим очень тихую работу газораспределительного механизма (в дальнейшем ГРМ). Если мы увеличим усилие клапанных пружин, то мы получим более высокий порог по оборотам, но более шумную работу ГРМ. Регулировать данный процесс можно несколькими способами.

  • Подбором и жесткостью клапанных пружин
  • Посадкой клапана в седле (занижение клапана)
  • Роспуск или поджатие тарелок

Из этих основных способов работы с газораспределительным механизмом, я предпочитаю работу с тарелками клапанов.

Тарелки клапанов. История.

Есть у меня несколько знакомых по России, которые, так или иначе имели отношение к советскому автоспорту. И много интересных рецептов я узнал от них. Начну издалека. Мощность двигателя, которая указана в ПТС карбюраторной Нивы – 72 лошадки, инжекторной – 80 лошадок. Это мощность эталонного двигателя. На самом деле можете смело выкидывать из этих цифр 10-15%, именно эти данные я видел на моторном стенде, на новых машинах. Мотористы и карбюраторщики старой закалки мне сказали, что с классического движка, без потери ресурса и особых изысков, можно снять около 100 л.с. Но прежде чем это сделать, двигатель надо понемножку к этому подготавливать. В частности для установки «взрослого» распредвала, необходима доработка ГБЦ. Пружины на клапанах классики очень сильно пережаты, и при установке распредвала с высокими кулачками, просто начинают стучать витками друг о друга. Результат – разрушение. Самый простой вариант, это на несколько миллиметров «распустить» клапанную пружину, чтобы при открытии клапана на большую глубину, витки не соприкасались. Эта операция и носит название – роспуск тарелок клапанных пружин.

Читайте также:  Настройка компасом спутниковой тарелки

Доработанные тарелки клапанов

Усилие клапанной пружины 2101 при штатной тарелке составляет 42-43 кг. По меркам современного моторостроения, для гражданского двигателя, это совершенно излишняя величина. Просадка тарелки на 3 мм, дает снижение нагрузки сжатия пружины на 4-6 кг. Теперь математика для 3 класса. Клапанов у нас 8. Суммарное снижение давления пружин, на механизм ГРМ около 35-40 кг. И это на каждый оборот распределительного вала. Теперь умножим это на 3000 об\мин…..и получим….Как говорил Аркадий Исаакович Райкин, сумасшедшие цифры получаются )) Задам риторический вопрос, почему на похожих объемах импортные движки ходят до капитального ремонта ГБЦ по 200-300 тысяч километров. А движок нивы, особенно на однорядной цепи, на 100-150 тыс. уже никакой. Одна из причин: очень сильная «зажатость» клапанов для гражданской машины. Как следствие, повышенный износ распредвала и его постели. На немецких двигателях, аналогичных объемов и мощность, усилие клапанных пружин находится в диапазоне 25-35 кг на клапан. Данный абзац применим ко всем двигателям, а не только к двигателям 21213 и 21214. Эксперименты и работы по роспуску или сжатию клапанных пружин, были начаты в 2010 году, с той поры тарелки с измененной геометрией были сделаны более чем для 50 двигателей, под самые разные пружины. Практика, полностью подтвердила теорию.

Вывод. Если вы хотите сделать работу двигателя более тихой и комфортной, усилие клапанных пружин можно еще ослабить. Двигатель крутиться до 4000 оборотов, даже если вы оставите только наружные пружины (пример, двигатель змз 409, УАЗ Патриот). Если вы хотите поднять планку верхних оборотов, то пружины должны быть более жесткие, или их должно быть две, чтобы при больших оборотах не происходило кинематического зависания клапана. То есть, чтобы клапан по инерции не завис в открытом положении и не ударился о поднимающийся поршень.

Как это было на оригинале

Теперь абзац специально для «умников, умниц и Д’Артаньянов», кто скажет что все это ерунда и на заводе не дураки сидят. Когда то давно, я купил у деда «копейку» ради того чтобы посмотреть на оригинал нашей классики. Самые первые двигатели, которые предложили итальянцы, как известно из истории были нижневальные. А уже после них пошло верхневальное семейство. На “дедовском” движке, объемом 1,2л, очень много где стояли клейма отнюдь не автоТАЗа. Те же надписи обнаружились позднее на шестернях редукторов, КПП и.т.д. Номер на шильде машины был несколькими нулями в начале. Было чему удивиться. Применительно к тарелкам: они были расточены так, как я вам рассказываю. Роспуск около 2-3 мм.

Вопрос. Имеет ли смысл поставить «просто так» доработанные тарелки клапана и почему?

Ответ. Тарелки, которые идут на наших двигателях с завода, имеют очень очень грубую обработку. Как они выходят из под штампа, так и идут на сборку, не обрабатывается даже посадочный конус под сухари клапана. Результат, тарелка не «сидит» по плоскости клапанной пружины, а работает частью плоскости, что постепенно приводит к деформации сухарей и разрушению узла клапан-сухари-тарелка. Как следствие, биение клапана, разбивание направляющей и повышенный расход масла.

Рекомендация. Замену тарелок клапанов имеет смысл произвести совместно с заменой маслосъемных колпачков.

Источник

Поделиться с друзьями